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Abstract

A residual generation approach using time-domain acceleration signals is presented for the detection of occurrence and

location of damage in a structural system. An explicit damage indicator is also incorporated in the acceleration-based

residual generators for the estimation of the severity of damage in individual elements. The formulation of the acceleration

residual generators for damage detection extends from a previous work in the literature where displacements and velocities

were considered. The basic idea of the damage residual generation is to transform the state–space description of a dynamic

system with structural (stiffness) changes in different elements into multi-failure events. Consequently, the damage

detection becomes effectively a disturbances decoupling problem (DDP) in control terminology, so that a geometric

technique can be employed to design residual generators for individual components of the structure. By analyzing the

residual error signal with an error model, the damage severity of a component can be established. Numerical and

experimental examples are given to illustrate the implementation and the effectiveness of the approach.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Time-domain methods for structural damage identification are seemingly attractive for real-time
applications simply because they do not involve domain change. Typical time-domain damage diagnosis
methods follow a similar routine. A mathematical model is set up in terms of a selected structural dynamic
response parameter, e.g., the restoring force, acceleration, displacement, or velocity. The reference (baseline)
model parameters are estimated from the signals measured from the undamaged state of the structure. The
baseline model is then applied on the signals measured from an unknown state of the same structure. By
analyzing the residual errors between the projected and actually measured signals, an indicative feature is
extracted which is then interpreted for the diagnosis of the damage. Masri et al. [1] employed the neural
network technique to set up a black box that predicts the restoring force, and the root mean square error ratio
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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was used as the damage feature. Sohn and Farrar [2] proposed a two-step AR–ARX (auto-regressive–
auto-regressive with eXogenous) model to predict the time series and subsequently used the standard deviation
(S.D.) ratio of the residual error to indicate the damage. Lu and Gao [3] used an ARX model to detect
structural damages with acceleration signals. A Kalman-filter based procedure was also adopted to process
noisy signals to enhance the time-domain feature extraction [4].

Most of the time-domain methods, however, face a common problem that the general statistical features
extracted directly from the time-domain signals are related vaguely to the overall state of the structure, and
there is a lack of explicit link between the a damage feature and the damage in individual elements. This
difficulty lies in the fact that the time-domain signals are usually measured from a selected number of degree of
freedom (dof). Without implementing a pertinent decomposition procedure, it is not possible to separate the
condition of each connecting member from the information extracted from a common dof.

To overcome the above difficulty in using the time-domain methods, it is necessary to find a more explicit
way to link the damage of each individual component to a certain damage feature. Ma et al. [5] proposed a
time-domain method for detecting structural changes in individual components. Using a linear lumped mass
shear frame model, it was demonstrated that the state–space description of the dynamic equation of the system
involving stiffness changes (representing damage) can be arranged into a form analogous to the extension of
fundamental problem of residual generation (EFPRG) to multiple failure events. The EFPRG was originally
introduced in the control literature as a disturbances decoupling problem (DDP), and a procedure for
the design of the residual generators was also developed using the geometric approach [6,7]. In the study by
Ma et al. [5], this technique was employed to design separate generators for individual elements in the
structural dynamic system. By processing the measured signals, each generator could detect the failure of
individual components separately. The results showed that the method was applicable for both stationary
(white noise) and non-stationary (El Centro earthquake) ground excitations. In a more recent study by
Ma et al. [8], the methodology was presented in the context of subspace decomposition such that damage in
each element or location is associated with an independent single-degree-of-freedom (sdof) system. However,
in both studies mentioned above, the measured time series are assumed to be displacement or velocity vectors.
Moreover, the severity of damage was estimated with a traditional system identification method that requires
an iteration procedure [8].

Considering the fact that acceleration measurement is commonly used in structural health monitoring
applications, this paper presents a formulation that enables the construction of residual generators for damage
in individual elements/locations using acceleration signals. Unlike the models based on displacement or
velocity, in the acceleration-based model the two system matrices are both affected when damage is introduced
in terms of a stiffness change. Hence, the failure modes and disturbances cannot be figured out in a
straightforward manner and a re-formulation of the problem is required, as described in Section 3. The
implementation of the proposed approach is illustrated through two representative numerical examples and a
laboratory experimental case.

2. Overview of the formulation of EFPRG to multiple failure events

Generally speaking, the EFPRG is a DDP, which was originally developed in the control field [6,7]. In this
section, the EFPRG is briefly introduced and the solution known as the residual generator technique is also
described.

The formulation of the EFPRG follows a description of a nominal linear time invariant (LTI) system in
the form:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ
Xk

i¼1

PimiðtÞ

yðtÞ ¼ CxðtÞ (1)

The above equation describes a system (C, A, B). The nominal input u(t) and the output y(t) are assumed to be
known. The signals mi(t) are arbitrary and unknown functions of time, representing the ith actuator failure
mode. The map Pi: mi-X is referred to as the ith actuator failure signature. The range of Pi is regarded as the



ARTICLE IN PRESS

ri (t)u (t)

Measurements

Residual
Generator of 
ith actuator  

System 
y (t)

Component
Failure

Actuator
Commands  

Fig. 1. Block diagram of a residual generator.
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disturbance from the ith actuator. If there is no disturbance from the ith actuator, the signal mi(t) is essentially
a zero signal.

The EFPRG may be solved by designing k residual generators, and a standard procedure for such purpose
was developed by Massoumnia et al. [7]. It is desired that a nonzero mi(t) should affect the residual signal of
the ith residual generator, ri(t), and only this generator. At the same time, other nonzero mj(t) (j 6¼i) should not
affect ri(t) of this residual generator. The process of one such generator is depicted with a block diagram
in Fig. 1.

According to Ref. [7], such residual generator has a general form for a realizable LTI processor that takes
the observables y(t) and u(t) as inputs and generates a residual ri(t) as:

_wðtÞ ¼ FwðtÞ � EyðtÞ þGuðtÞ

riðtÞ ¼MwðtÞ �HyðtÞ (2)

where E, F, G, M and H are coefficients.
The residual generator represented by Eq. (2) is designed for a specific actuator, so that when the particular

actuator failure mode is present, a nonzero signal mi(t) can lead to a nonzero ri(t). Thus, ri(t) calculated from
Eq. (2) becomes the monitor of the ith actuator.

When the system [A, B, C, D, Pi (i ¼ 1,y,k)] is provided and satisfies the solution condition (Appendix B),
a geometric approach can be used to develop these monitors. According to Ref. [7], the coefficients of Eq. (2)
should satisfy the following conditions:

F ¼ A0 þD1M; where eigðFÞ ¼ K with negative eigenvalue;

E ¼ OD0 þD1H; G ¼ OB; M ¼ HCO�r; HCPjai ¼ 0; and HCPia0

For O, D0, and A0, it has:

OðAþD0CÞxðtÞ ¼ A0OxðtÞ; OPjai ¼ 0; and OPia0

Further information on the procedure is given in Appendix A.
Using Eqs. (1) and (2), and arranging, it follows:

_wðtÞ �O _xðtÞ ¼ FwðtÞ � ðOD0 þD1HÞyðtÞ þGuðtÞ �OAxðtÞ �OBuðtÞ �O
Xk

i¼1

PimiðtÞ

¼ FwðtÞ � ðOD0 þD1HÞCxðtÞ þOBuðtÞ �OAxðtÞ �OBuðtÞ �O
Xk

i¼1

PimiðtÞ

¼ FwðtÞ �O AþD0Cð ÞxðtÞ �D1HCxðtÞ �O
Xk

i¼1

PimiðtÞ (3)
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With the aforementioned definition of the coefficients, the above equation can be rewritten as:

_wðtÞ �O _xðtÞ ¼ FwðtÞ � ðA0 þD1MÞOxðtÞ �OPimiðtÞ (4)

Defining e(t) ¼ w(t)�Ox(t), the state–space model in Eq. (2) can be expressed as:

_eðtÞ ¼ FeðtÞ �OPimiðtÞ

riðtÞ ¼MeðtÞ (5)

In Eq. (5), _eðtÞ is expressed with mi(t) as the only input. It follows that the system relating mi(t) to e(t) is input

observable (the disturbance signal of mi(t) can effect signal e(t)); and obviously other disturbances mj 6¼i(t) are
unobservable (the disturbance of mj 6¼i(t) will not lead to disturbance of signal e(t)). Hence, ri(t) is not affected
by signals mj 6¼i(t). Only when mi(t) exhibits failure of the ith actuator, ri(t) will become effectively nonzero.
Thus, ri(t) satisfies the requirement of the solution as an indicator of the ith actuator.
3. Problem formulation for acceleration-based damage diagnosis

For a structural dynamic system, the equation of motion can be expressed as:

M0
€xðtÞ þ C0

_xðtÞ þ K0xðtÞ ¼ L0uðtÞ (6)

where u(t) is the input vector; M0, C0, K0 are mass, damping, and stiffness matrices, respectively; and L0 is a
load matrix.

The above dynamic equation can also be expressed in a state–space form for a linear system:

_xðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ þ LuðtÞ (7)

where x(t) is the state vector, u(t) denotes the excitation and y(t) is the structural response. When y(t) and u(t)
are confined as accelerations, the coefficient matrices in Eq. (7) can be determined [9] as:

A ¼
�J I

�K 0

� �
; B ¼

�JL

�KL

� �
; C ¼ I 0

� �
(8)

where K, J, L are mass normalized stiffness, damping and load matrices, respectively, K ¼M�10 K0,
J ¼M�10 C0, and L ¼M�10 L0.

If the effect of damage in different components of the structure can be transformed as failure of different
actuators, then the solution of EFPRG can be applied to identify the damage in individual components of the
structure. Consider the structural changes in the form of stiffness reduction only, and assume the damping
matrix J and load matrix L remain unchanged. Hence, defining yt(t) ¼ y(t)�Lu(t) as the system output, the
second formula in Eq. (7) can be simplified as yt(t) ¼ Cx(t).

When stiffness changes occur, the model parameters A and B will change in accordance with Eq. (8). Thus,
the system with damage can be written as:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ DAxðtÞ þ DBuðtÞ; ytðtÞ ¼ CxðtÞ (9)

Define DK as the change of the stiffness matrix K due to damage in some components. It is possible to
decompose DK into the following form (Appendix C):

DK ¼
Xk

i¼1

piqiai (10)

where k is the number of structural components potentially with damage, ai denotes the damage severity of the
ith component, pi and qi are the decomposed matrices of the stiffness of the ith component in the global
stiffness matrix. pi and qi are targeted to have as fewer as possible columns and rows, respectively.
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DA and DB can then be written as:

DA ¼
0 0

�DK 0

" #
¼ �

Xk

i¼1

0

pi

" #
qi; 0
h i

ai

DB ¼
0

�DKL

" #
¼ �

Xk

i¼1

0

pi

" #
qiLai (11)

Subsequently,

DAxðtÞ þ DBuðtÞ ¼ �
Xk

i¼1

0

pi

" #
½ qi; 0 �aixðtÞ �

Xk

i¼1

0

pi

" #
qiLaiuðtÞ

¼ �
Xk

i¼1

0

pi

" #
aið½ qi; 0 �xðtÞ þ qiLuðtÞÞ

¼
Xk

i¼1

PimiðtÞ (12)

Here the failure signatures are: Pi ¼ ½ 0 pi �
T for each component, and the disturbance mi(t) has the form:

miðtÞ ¼ �aiðqi � ½ I; 0 �xðtÞ þ qiLuðtÞÞ ¼ �aiqiðCxðtÞ þ LuðtÞÞ ¼ �aiqiyðtÞ (13)

Although this definition of mi(t) is not necessary for the implementation of EFPRG, it facilitates the
estimation of the damage severity, as will be described in Section 4.

Substitution of Eq. (12) in Eq. (9) yields the model with multi-failures events as:

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ
Xk

i¼1

PimiðtÞ

ytðtÞ ¼ CxðtÞ (14)
Plant
Parameters
A, B, C, L 

Failure signatures
P1,P2,…Pk 

Residual Generator 1 

Residual Generator k 

Residual Generator 2 
EFPRG 

algorithm 

……

ri (t)

u (t)

y (t)

yt = y (t) + Lu (t)

Residual
Generator i  

Fig. 2. Standard procedure of design of residual generators and residual generation: (a) block diagram for the design of residual generator

and (b) block diagram for residual generation for ith component.
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Through the above transformation, the damage in different components can be described as the actuator
failure of system (C, A, B). Now the geometric approach can be used to design the residual generators of
Eq. (14), which has the standard form of EFPRG as expressed in Eq. (1). The damage signature of the ith
component, Pi ¼ ½ 0 pi �

T, can be determined following the element stiffness decomposition procedure
(Appendix C). The diagrams for designing the residual generators and the procedure of residual generation are
shown in Fig. 2. More detailed procedure for the design of the residual generator for an individual component
is given in Appendix B. Thereafter, the damage status of the ith component can be assessed by examining the
level of the residual error signal ri(t) from the ith generator.
4. Evaluation of damage severity

Totally, k number of residual generators will be designed and each generator represents one particular
component. As can be seen from Eqs. (10) to (12), in order for the generators to provide consistent results, the
k number of generators should cover all components that may be subject to damage and hence contribute in
the change of the global stiffness DK. Then the monitoring results should not be affected by the choice of k.
Subsequently, it becomes possible to evaluate the damage severity of individual components by further
examining the residual error ri(t), as explained in what follows.

Using the definition of mi(t) in Eq. (13), from Eq. (5) we get:

_eðtÞ ¼ FeðtÞ þ aiOiPiqiyðtÞ

riðtÞ ¼MeðtÞ (15)

With the generator parameters obtained as described in Appendix B, and y(t), u(t) available from the
measurement, ri(t) can be obtained from the ith generator by Eq. (2). On determining the decomposed stiffness
component qi as described in Appendix C, the damage severity factor ai becomes the only unknown parameter
in Eq. (15) and hence can be easily evaluated. The block diagram for the evaluation of the damage severity
factor ai is shown in Fig. 3.
5. Numerical examples

In this section, the proposed approach is applied on two numerical examples, namely a three-storey lumped
mass frame and a truss, to illustrate its implementation and effectiveness in the structural damage diagnosis. It
should be noted that the present method requires all dof in the representative dynamic model of the structure
to be measurable. Considering the practical difficulty in the measurement of rotational signals, these numerical
examples do not involve joint rotations. Nevertheless, in principle, the method is applicable for structures with
joint rotations so long as the rotational response signals are available.

The three-storey lumped mass system is identical to the example used by Ma et al. [5]; however, herein
acceleration signals are used instead of displacements and the damage severity is also calculated. The truss



ARTICLE IN PRESS
F. Gao, Y. Lu / Journal of Sound and Vibration 319 (2009) 163–181 169
system is employed to further demonstrate the applicability of the method in a more complex situation with
multiple members connecting at a common joint.

In these examples, the mass, stiffness, and damping of the undamaged system are pre-selected. The time
series of the acceleration measurements under various damage scenarios are simulated by a structural dynamic
response analysis. These signals are used as the available measurements for the damage diagnosis. The effects
of the model accuracy and the measurement noise on the performance of the method will be discussed with a
laboratory experimental case in Section 6.

In implementing the models for the generators and the damage severity, the continuous formulation
described in the previous sections are transformed into the discrete models by a standard zero-order-hold
discretization. For the state–space model, it has [11]:

xðk þ 1Þ ¼ ADxðkÞ þ BDuðkÞ

yðkÞ ¼ CxðkÞ (16)

where

AD ¼
X1
j¼0

ðADtÞj

j!
; and BD ¼ A�1ðAD � IÞB
5.1. Three-story lumped mass shear frame

The three-story lumped mass shear frame, shown in Fig. 4, is assumed to have uniform properties in all
storeys, with mass Mi ¼ 1000 kg, stiffness Ki ¼ 980 kN/m, and damping coefficient Ci ¼ 1.407 kN-s/m. The
natural frequencies of the frame are evaluated to be 2.22, 6.21 and 8.97Hz, respectively. The damage is
represented by stiffness changes. The simulated damage scenarios include single- and multiple-damage
scenarios with different damage severity. A broad-band white noise acceleration with a standard deviation
of 1m/s2 is used to excite the structure at the base. The measurements include the accelerations at the
three-storey levels.

Applying the procedure described in Appendix C, the failure signatures for the three-storey stiffness factors
are found to be:

P1 ¼ 0; 0; 0; 0; 0; 1
� �T
K1

K2 

K3 

m3

m2

m1

Fig. 4. A three-storey lumped mass frame model.



ARTICLE IN PRESS
F. Gao, Y. Lu / Journal of Sound and Vibration 319 (2009) 163–181170
P2 ¼ 0; 0; 0; 0; �1; 1
� �T

P3 ¼ 0; 0; 0; �1; 1; 0
� �T

Referring to Appendix B, in the present case ki ¼ 1 for actuators 1, 2 and 3, and l ¼ 3, v ¼ 3, n ¼ 6, the
generic solvability conditions vpn and v�minfki; i 2 kgol are satisfied. Then three monitors, designated as
No. 1, 2, and 3, can be designed to monitor the stiffness coefficients K1, K2, and K3, respectively. The design of
one residual generator, r2(t), is described in more detail as an example in what follows.

First, the subspace Wn

2 of (C, A)-invariant is given by the following CAISA ((C, A)-Invariant Subspace

Algorithm) (Appendix A):

Wn

2 ¼ P1 � P3 � AP1 � AP3

Thus, the insertion map W2 :W
n

2 ! X is W2 ¼ [P1, P3, AP1, AP3].
Sn

2 as (C, A)-u.o.s. (UnObservability Subspace) is obtained by the following UOSA (UnObservability

Subspace Algorithm, see Appendices A and B):

Sn

2 þ KerC ¼Wn

2 þ KerC
�
 Step 1: D0 ¼ �A
2 P1; P3

� �
CA P1; P3

� �� ��l
, hence

D0 ¼

1:4 0 0

�1:4 0 0

0 0 1:4

1960 0 0

�2940 0 �980

980 0 1960

2
666666664

3
777777775
�
 Step 2: Find O from [P1, P2, P3, AP1, AP2, AP3]
�l by its second row and fifth row as:

O ¼
1 1 0 0 0 0

0 0 0 1 1 0

� �

Let A0 ¼ AþD0C : X=Sn

2, A0 is the map induced on the factor space X=Sn

2:

A0 ¼
1:407 1

�980 0

� �
�
 Step 3: H can be calculated by

H ¼ I� C P1; P3

� �
CA P1; P3

� �� ��l
; H ¼

0 0 0

1 1 0

0 0 0

2
64

3
75
�
 Step 4: Solve for M from MO ¼ HC

M ¼

0 0

1 0

0 0

2
64

3
75
�
 Step 5: Let eig(F) ¼ [�1, 0; 0, �1 ] that satisfies the condition of self-conjugate with negative eigenvalue;
then F satisfing F ¼ A0+D1M can be found as:

F ¼
2 1

�1 0

� �
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and hence

D1 ¼
0 �0:593 0

0 979 0

� �
�
 Step 6: With O
�r denoting a right inverse of O, calculate D ¼ D0+O

�r
D1H, E ¼ OD, G ¼ OB:

D ¼

0:8 �0:6 0

�1:4 0 0

0 0 1:4

2939 979 0

�2940 0 �980

980 0 1960

2
666666664

3
777777775

E ¼
0:593 �0:593 0

�1 979 �980

� �

G ¼
�2:8140

0

� �

Then the generator of r2(t) that takes the observables y(t) and u(t) as inputs is completely established
following Eq. (2) as:
_wðtÞ ¼ FwðtÞ � EyðtÞ þGuðtÞ; r2ðtÞ ¼MwðtÞ �HyðtÞ

Similarly, the generator r1(t) and r3(t) are designed. In order to keep comparable magnitudes of all residual
signals, eig(F) ¼ [�1, 0; 0, �1] is adopted for each generator.

Figs. 5 and 6 show the output of the residual generators for different damage scenarios. Each figure includes
the signals from three residual generators for a particular damage scenario. When a residual signal from a
generator shows apparent nonzero signal, it indicates the occurrence of damage on the structure at the
component represented by the corresponding generator. On the other hand, if a residual signal is close to zero,
no change takes place at the corresponding component. From the results shown in Figs. 5 and 6, the various
damage scenarios can be clearly determined.

With the residual signal generated, the damage severity can be calculated following the block diagram shown
in Fig. 3. The values of ai for the stiffness in these storeys are listed in Table 1. It can be seen that the ai values
reflect quite accurately the actual damage severity in terms of the percentage reduction of the storey stiffness.

5.2. Truss system

The truss is depicted in Fig. 7. Since multiple members are connected at certain common joints, it would be
difficult to distinguish changes in individual members by analyzing the signals measured at these joints
following a general time-domain method. However, using the residual generator technique it becomes possible
to determine the damage status of each member.

In this example truss, each member is 0.5m long, and all the members are made by aluminum pipe of
circular section with an outer radius of 20mm and a wall thickness of 2mm. The modulus of elasticity of the
material is 7.0� 107KN/m2. Joints J1, J2 and J3 are allocated an equal lumped mass of 50 kg. The damping
ratio is assumed to be 0.5% for all modes. The truss is excited at J1 with a vertical dynamic force of a broad-
band white noise with a standard deviation of 50N. The accelerations at the three free joints (6-dofs) shown in
Fig. 7 are taken as the measurements.

Six residual generators are designed, one for each member of the truss. Two damage scenarios are chosen to
demonstrate the results, one with a stiffness reduction of 20% in member 2, another with a stiffness reduction
of 20% in both members 2 and 4.
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0

0.2
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Fig. 5. Acceleration residual error signals for single-damage scenarios: (a) reduction of K1 by 10%, (b) reduction of K2 by 10%, and (c)

reduction of K3 by 10%.
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The output from generators for K2 and K4 are plotted in Fig. 8. The signals from other generators are not
shown because they are essentially zero for these cases. From the figure, the damaged members can be easily
detected by the large residual error. The values of ai for the three truss members are listed in Table 2. It can be
observed that the percentage stiffness changes are fairly well identified.

6. Experimental study

In this section, the proposed method is applied on an experimental case to verify its workability and
effectiveness under an actual structural and measurement condition. For illustrative purpose with an emphasis
on the real measurements, a relatively simple model structure is chosen.

For the design of the residual generators, a basic structural (finite element) model needs to be established
first for the general description of the actual structural system in question. Although it is desirable that the model
describes closely the actual structure, the absolute accuracy of the model does not necessarily cast a problem
as far as the relative change of the structural (stiffness) condition is concerned. The accuracy of the FE model
in representing the actual structure would be reflected in the absolute residual errors. Once a baseline residual
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Damage K1, K2 : 10%
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0
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Fig. 6. Acceleration residual error signals for multiple-damage scenarios: (a) reduction of K1 and K2 by 10% each; (b) reduction of K1

and K3 by 10% each; (c) reduction of K1, K2 and K3 by 10% each; and (d) reduction of K2 and K3 by 20% each.
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error is established for a reference state of the structure, the future monitoring can be based on the relative
deviation of the residual error signals with respect to the baseline error. From this point of view, the accuracy of the
finite element model should not affect sensibly the monitoring effect, as will be shown later in this experimental
example.
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Fig. 7. Example truss showing component and dof numbers.
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Fig. 8. Acceleration residual error signals from generators K2 and K4: (a) damage 20% on both K2 and K4 and (b) damage 20% on K2.

Table 1

Results of damage severity (a values) for the shear frame example

Damage scenarios a1 for K1 a2 for K2 a3 for K3

No damage 0.15% �0.04% �0.02%

K1 10% damage 10.12% �0.06% �0.02%

K2 10% damage 0.15% 9.97% �0.02%

K3 10% damage 0.14% �0.03% 9.98%

K1 and K2 10% damage 10.12% 9.97% �0.02%

K1 and K3 10% damage 10.12% �0.04% 9.98%

K2 and K3 10% damage 0.14% 9.97% 9.98%

K2 and K3 20% damage 0.16% 19.97% 19.98%

K1, K2, and K3 10% damage 10.12% 9.97% 9.98%
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Table 2

Results for damage severity (a values) for the truss example

Damage scenarios a2 for K2 a4 for K4

K2 and K4 20% damage 21.73% 20.54%

K2 20% damage 20.46% 0.50%

K3
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K3-18% no damage

K3-18% no damage

K1

Generator K3 (for top storey stiffness)

Generator K2 (for second storey stiffness)

Generator K1 (for first storey stiffness)

Fig. 9. Laboratory test frame and residual error signals generated from the three monitors: (a) test frame and (b) acceleration residual

error signals.
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The test structure is a model steel frame, shown in Fig. 9. The beams are purposely made stiff with a hollow
box section of 50mm� 50mm� 3mm. The columns are to be monitored and they are made of flat
steel bars with a cross-section of 50mm� 6mm. The weaker axis of the columns is aligned in the frame plane
so that the test structure has the natural frequency characteristics similar to an actual steel frame. The beams
and columns are rigidly connected by welding. The frame is fixed rigidly on a strong steel base plate.

Because of the stiff beams, the frame has effectively only three translational dofs in the horizontal direction.
The damping ratio is taken to be 2% for all modes. On the basis of the mechanical properties and the member
dimensions, the stiffness matrix of this 3-dof system is calculated as (N/m):

K0 ¼ 104 �

5:07 �5:07 0

�5:07 11:07 �6:0

0 �6:0 10:04

2
64

3
75

The mass matrix of the system is found to be (kg):

M0 ¼

1:81 0:22 0

0:22 2:48 0:23

0 0:23 3:01

2
64

3
75
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In this experiment, the vibration was induced by a base excitation via a shake table. The excitation followed
a random signal of uniform frequency spectrum in 0.1–60Hz range, with duration of 20 s and rms 0.03� g.
The same excitation was repeated for three times for each test.

After the initial tests on the original test frame, the test structure was modified to represent a damaged state
by replacing a third-storey column with a new element of a reduced cross-section at 32mm� 6mm. This
resulted in a reduction of the stiffness of the third storey by approximately 18%. Table 3 summarizes the
measured natural frequencies and damping ratios of the test frame before and after the ‘‘damage’’.

The reference 3-dof structural model can be described in a state–space form according to Eqs. (1), (8)
and (10), thus

A ¼

�6:16 �6:80 �0:67 1 0 0

4:67 �9:97 �5:56 0 1 0

�0:36 �4:75 �7:09 0 0 1

�308 34000 �3350 0 0 0

23300 �49900 27800 0 0 0

�17900 23700 �35500 0 0 0

2
666666664

3
777777775

B ¼ 0:031; �0:255; 2:70; 154:0; �1270; 13500
� �

The failure signatures are:

P1 ¼ 0; 0; 0; M�10
1; �1; 0
� �Th iT

P2 ¼ 0; 0; 0; M�10
0; 1; �1
� �Th iT

P3 ¼ 0; 0; 0; M�10
0; 0; 1
� �Th iT

Similar to the numerical example in Section 5.1, three monitors are designed to monitor the change of
stiffness in the three storeys, respectively. The measurements from the undamaged and damaged (at top
storey) cases are employed to examine the effectiveness of the residual generators. Fig. 9(b) plots the residual
error signals. The damage severities of individual storeys are calculated and shown in Table 4.
Table 3

Natural frequencies and damping ratios of test structure

Mode Undamaged K1-18% damaged

Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 9.8 0. 03 9.7 0.05

2 26.7 0.04 25.6 0.04

3 41.7 0.04 40.1 0.06

Table 4

Damage severities (stiffness changes) identified before and after damage

FE model stiffness (N/M) No damage K3 reduced by 18%

K3 50,700 16.4% 27.4%

K2 60,000 10.8% 10.2%

K1 40,400 �14.8% �12.5%
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It can be clearly observed from Fig. 9(b) that K3 is significantly changed before and after the modification of
the structure. On the other hand, the monitors for K1 and K2 exhibit insignificant changes. These results agree
favorably with the actual changes induced to the test structure.

Comparing to the simulated cases presented in Section 5, the absolute ‘‘baseline’’ residual errors for the
undamaged structure appear to be rather high as opposed to ‘‘zero’’ under an ideal condition. Apart from the
effect of noise that inevitably exists in the measured accelerations, this is also attributable to a certain
deviation of the properties used in the 3-dof structural model in representing the actual test structure. This can
be confirmed by the calculated damage severity indicators shown in Table 4. In fact, the values for the
undamaged state (second column in the table) may be interpreted as the extent to which the 3-dof model
deviates from the actual structure. Such information could be used in a model updating procedure, which is
beyond the scope of the present paper and hence will not be discussed further here. As far as the damage
detection is concerned, it is the relative difference in the damage severity values between the undamaged and
damaged states that really matters. In the present example, it can be deduced from the relative severity values
that more than 10% reduction has occurred to the top storey (K3).

7. Conclusions

An extended residual generator technique is presented for the time-domain damage diagnosis using
acceleration response signals. The dynamic equation of a structure with acceleration responses is transformed
into the standard form of EFPRG, so that the existing solution procedure of EFPRG can be applied to design
the residual generators for individual components in the structure. Such residual generators are capable of
detecting the occurrence and the location of damage in the structure. In addition, a damage severity indicator
is incorporated to allow for an explicit calculation of the degree of damage in terms of the stiffness reduction.

Numerical examples with a swaying type of frame and a truss system demonstrate that the method can
effectively determine the damage location as well as the damage severity under idealized structural and
measurement conditions. The method is also applied to a laboratory experimental case with actually measured
acceleration response signals. The results indicate that the accuracy of the structural model (in this case a
multi-dof system) and the noise in the measurements would affect the absolute levels of the residual errors in
the designed monitor; however, by examining the relative changes between the current (damaged) and a
baseline (undamaged) error signals the actual structural changes can be clearly identified and assessed. In this
respect, the requirement of a structural (finite element) model should not become a major issue in the
implementation of the proposed approach.

It should be noted that the present method requires all degrees of freedom in the dynamic model of the
structure to be measurable. Because of this, the application of the method can be problematic in the case of a
continuous system such as a beam, unless the rotational measurements become available. Although the
measurement of rotations is becoming increasingly affordable in some applications, it would be more desirable
if the method can be extended to using other auxiliary information in lieu of the rotational measurements for
the damage diagnosis. To this end, further development is required.

Appendix A. Background information for geometric technique

For a quick reference, the relevant notation, linear algebra and the preliminaries of linear dynamic systems
are extracted from the literature [6,7,10] and given in this appendix. More detail information can be found
from the above publications.

A.1. Space and subspace

Denote the real vector spaces by X;Y;Z; . . ., and typical elements by x, y, z, y; dðXÞ is the dimension of X.
A subspace S of the linear space X is presented as: S � X. It is a subset of X which is a linear space under the
operations of vector addition and scalar multiplication inherited from X.

If R;S � X, the internal direct sum of subspaces is written as: S� R. It means the subspaces being added
are known to be independent. It has dðS� RÞ ¼ dðSÞ þ dðRÞ � dðS \ RÞ.
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A.2. Matrix and map

If B is monic, then B�l denotes a left inverse of B (i.e., B�lB ¼ I). If C is epic, then C�r denotes a left inverse
of C (i.e., CC�r

¼ I).
Let fxi; i 2 ng be a basis for X and fyj ; j 2 pg a basis for Y. If C : X! Y is a map,

Cxi :¼ c1iy1 þ c2iy2 þ � � � þ cpiyp; i 2 n

The symbol ‘‘: ¼ ’’ means equality by definition. Observe that if x 2 X then Cx is completely determined by the
Cxi due to linearity. Matrices and linear maps are denoted by A, B, C; the same symbol is used both for a
matrix and its map.

ImC denotes the image of C: As C : X! Y,

ImC :¼ fCx : x 2 Xg � Y

and KerC denotes the kernel of C:

KerC :¼ fx : x 2 X&Cx ¼ 0g � X

The maps A : X! X, B : U! X, and C : X! YðdðXÞ ¼ n; dðYÞ ¼ l; dðUÞ ¼ mÞ are fixed throughout and are
associated with the ‘‘system (C, A, B)’’:

_xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ

A.3. Factor space

Let S � X. Vectors x; y 2 X are called equivalent mod S if x� y 2 S. The factor space X=S is defined as the
set of all equivalence classes:

x :¼ y; y 2 X; y� x 2 S
� 	

; x 2 X

The function x7!x is a map O : X! X=S, called the canonical projection of X on X=S. Clearly O is epic, and
KerO ¼ S.

A.4. Invariant

A subspace W 	 X is termed A-invariant if AW 	W. Let W 	 X be A-invariant; write A :W for the
restriction of A to W, and A : X=W for the map induced by A on the factor space X=W.

If a subspace W 	 X is (C, A)-invariant, there exists a map D : Y! X such that ðAþDCÞW 	W. Let W be
(C, A)-invariant; denote by DðWÞ the class of all maps D such that ðAþDCÞW 	W. W is (C, A)-invariant if
and only if AðW \ KerCÞ 	W. Let L 	 X; here define the family of (C, A)-invariant subspaces containing L by
WðLÞ. Referring to Ref. [6], the family WðLÞ is closed under intersection; hence WðLÞcontains an infimal
element Wn :¼ inf WðLÞ. Also Wn

¼ limWk where Wk is given by the following recursive algorithm [(C, A)-
Invariant Subspace Algorithm]:

CAISA :Wkþ1
¼ Lþ AðWk

\ KerCÞ; W0
¼ 0

A.5. Unobservablility and observability

If the subspace B ¼ ImB and hAjBi ¼ Bþ ABþ � � � þ An�1B for the infimal A-invariant subspace
containing B, i.e., the reachable subspace of ðA;BÞ. Write K ¼ KerC and hKjAi ¼ K \ A�1K \ � � � \ A�1K for
the supremal A-invariant subspace contained in K, i.e., the unobservable subspace of (C, A).

A subspace S 	 X is a (C, A) UnObservability Subspace (u.o.s.) if S ¼ hKerHCjAþDCi for some output
injection map D : Y! X and measurement mixing map H : Y! Y. Note that S is the unobservable subspace
of the pair (HC, A+DC), and the spectrum of AþDC : X=S can be assigned to an arbitrary symmetric set by
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appropriate choice of D. Here use the notation SðLÞ for the class of u.o.s. containing L. The class of u.o.s. SðLÞ

is closed under intersection; therefore, it contains an infimal element Sn :¼ inf SðLÞ. Also Sn
¼ limSk where

Sk is given by the following recursive algorithm (UnObservability Subspace Algorithm):

UOSA : Skþ1
¼Wn

þ ðA�1Sk
Þ \ KerC; S0

¼ X

Moreover, Sn
¼ hKerCþWn

jAþDCi for Wn :¼ inf WðLÞ and D 2 DðWn
Þ. It follows that DðWn

Þ 	 DðSn
Þ,

and KerCþWn
¼ KerCþ Sn.

A system (C, A, B) is input observable if B is monic and S \ B ¼ 0, S is the u.o.s. of (C, A).

Appendix B. Procedure for the residual generator (monitor) design

The formulation of the EFPRG to multiple failure events is described here. A geometric approach is used to
solve the EFPRG, and a procedure is described to design the residual generators for multiple failure events.
More details can be found from the literature [6,7,10].

In a general EFPRG as expressed in Eq. (1), the observables are the known actuation signal u(t) and the
output y(t). The maps Pi : Mi ! X is called the ith actuator failure signatures, which means Pi projecting the
signal mi(t) to x(t). The signal mi(t) is the disturbance from the ith actuator, which is unknown. If there is no
disturbance from the ith actuator, the signal mi(t) is nominally a zero signal.

The generic solvability conditions for an EFPRG problem is stated, according to Refs. [6,7], as follows: with
A, C and Pi being arbitrary matrices of dimensions n� n, l� n, n� ki, respectively, and let v ¼ Ski, the
EFPRG generically has a solution if and only if vpn and v�min{ki, iAk}ol. So the Pi should contain as less
number of columns as possible.

The most general form for a realizable residual generator for the ith actuator has been defined in Eq. (2).
The following procedure is to determine the coefficients in Eq. (2) so that when the ith actuator failure mode is
present, the nonzero signal mi(t) can lead to nonzero ri(t).

Generally speaking, the algorithm of this solution is that, by choosing D0 and H appropriately, one can
change the observability properties of (HC, A+D0C) in such a way that failure of all actuators are invariant,
and the failure of all actuators are unobservable except the ith actuator. The first step is to keep the failures in
their own subspaces; and the second step is to make the failure of the ith actuator be observed only.

The invariant subspace Wn

i and the unobservable subspace Sn

i should be defined and obtained first before
solving the EFPRG.

First, the subspace Wn

i of (C, A)-invariant is given by the following CAISA [(C, A)-Invariant Subspace

Algorithm]:

Wn

i ¼ P1 � � � �Pj � � � �Pk � AP1 � � � �APj � � � �APk for all Pjai

With this definition, the insertion map Wi :W
n

i ! X can be written as:

Wi ¼ ½P1; . . .Pj ; . . .Pk;AP1; . . .APj ; . . .APk� for all Pjai

Theoretically, the unobservable subspace Sn

2 as (C, A)-u.o.s. (UnObservability Subspace) can be obtained
theatrically by the following UOSA (UnObservability Subspace Algorithm):

Sn

2 þ KerC ¼Wn

2 þ KerC

In the application of FEPRG to structural dynamic system, it can be considered as Sn

2 ¼Wn

2.
Since S
i has been obtained, EFPRG has a solution if and only if Sn

i \ Pi ¼ 0, where Sn

i :¼ inf Sð
P

jaiPiÞ. It
requires that each column ofWi cannot be expressed by either c*Pi, or c*APi (here c is an arbitrarily constant).

The detailed steps as proposed in Ref. [7] for the design of a monitor for a specific component is summarized
as follows:
�
 Step 1: Find a D that satisfies D0 2 DðSn

2Þ. According to UOSA, such D can be found by
ðAc þDCÞW
2 	W
2. On the basis of the suggestion by Massoumnia [7], one such D is given as:

D0 ¼ �A
2
½P1; � � �Pj ; � � �Pk �ðCA½P1; � � �Pj ; � � �Pk �Þ

�l for all jai
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Step 2: Find O : X! X=Sn

i as the canonical projection. Referring to the definition of the canonical
�

projection in Appendix A, O should satisfy the following conditions: KerO ¼ Sn

2, which means OPj ¼ 0 for
j6¼i; O can project space X to X=Sn

i , OðAþD0CÞxðtÞ ¼ A0OxðtÞ. In the application to structural dynamic
system, one such O can be extracted from [P1, y, Pk, AP1, y, APk]

�l by its ith row and i+n/2th row.
At the same time A0 ¼ A+D0C: X=Sn

i is called the map induced on the factor space X=Sn

2. In the
application to structural dynamic system, A0 can get from A+D0C by certain elements as:

i; i i; i þ n=2

i; i þ n=2 i þ n=2; i þ n=2

" #
�
 Step 3: Let H denote a solution of KerHC ¼ Sn

i þ KerC, which means HCPj 6¼i ¼ 0. In the structural
dynamic system, H can be calculated by

H ¼ I� CA2 P1; � � �Pj ; � � �Pk

h i
CA P1; � � �Pj ; � � �Pk

h i
 ��l

for all jai
�
 Step 4: Let M be the unique solution of MO ¼ HC.

�
 Step 5: Let F ¼ A0+D1M and eig(F) ¼ L. L is an arbitrary self-conjugate set with negative eigenvalues.

Hence D1 is also found. In the example of structural dynamic example, a suggestion is to taking L ¼ [�1, 0;
0, �1] first, then F ¼ A0+D1M can be found according to A0 and M. Hence D1 also can be found.

�
 Step 6: With O�r denoting a right inverse of O, calculate D ¼ D0+O�rD1H, E ¼ OD, G ¼ OB.

Following these steps the coefficients [F, E, G, M, H] has been calculated, which satisfies the requirement of
the solution as an indicator of the ith actuator.
Appendix C. Discussion on the decomposition of stiffness matrix

As noted in Section 3, in order to satisfy the generic solvability conditions for EFPRG (refer to Appendix),
the failure signatures Pi should contain as less number of columns as possible. This necessitates a proper
decomposition of the damage effect of the model parameters.

The stiffness matrix of an element can be decomposed into the product of matrices with fewer columns and
fewer rows, respectively, than the original stiffness matrix. For example:

The stiffness matrix of a spring element:

k ¼ k0

1 �1

�1 1

� �
¼ k0

�1

1

� �
�1 1
� �

Thus, pi ¼ �1 1
� �T

; qi ¼ �1 1
� �

.
The stiffness matrix of a truss element (with s and c denoting the directional sine and cosine, respectively):

k ¼
EA

l

c2 cs �c2 �cs

cs s2 �cs �s2

�c2 �cs c2 cs

�cs �s2 cs s2

2
6664

3
7775 ¼ EA

l

c

s

�c

�s

2
6664

3
7775 c s �c �s
� �

The stiffness matrix of a beam element:

k ¼
EI

l3

12 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l

6l 2l2 �6l 4l2

2
6664

3
7775 ¼ 2EI

l3

1 1

l 0

�1 �1

0 l

2
6664

3
7775 3 2l �3 l

3 l �3 2l

� �
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In the assembled global stiffness matrix, the contribution of each member matrix can be looked on as the
member stiffness matrix entries inserting into a null matrix with the dimension of the global stiffness matrix.
So the contribution of the ith member in the global stiffness matrix, denoted as K0i, also can be decomposed in
the same way. Consequently, DK can be written in the following form for all possible damage in these
members:

DK ¼M�10

Xk

i¼1

aiK0i ¼
Xk

i¼1

piqiai

where k is the number of members that may be subject to damage, ai denotes the damage severity of the ith
member; if no damage occurs, ai ¼ 0.

This leads to the establishment of Eq. (10) in Section 4.
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